Expanded mixed finite element methods for linear second-order elliptic problems, I

نویسنده

  • ZHANGXIN CHEN
چکیده

We develop a new mixed formulation for the numencal solution of second-order elliptic problems This new formulation expands the standard mixed formulation in the sense that three variables are exphcitly treated the scalar unknown, its gradient, and its flux (the coefficient times the gradient) Based on this formulation, mixed finite element approximations of the second-order elliptic problems are considered Optimal order error estimâtes in the L~ and H~ -norms are obtained for the mixed approximations. Vanous implementation techniques for solving the Systems of algebraic équations are discussed A postprocessing method for improving the scalar variable is analyzed, and superconvergent estimâtes in the L-norm are denved The mixed formulation is suitable for the case where the coefficient of differential équations is a small tensor and does not need to be inverted © Elsevier, Paris Résumé —L'objet de cet article est l'écriture d'une nouvelle formulation mixte relative aux problèmes elliptiques d'ordre deux, et l'implémentation de méthodes d'éléments finis mixtes pour la détermination de solutions approchées On donne alors des estimations d'erreurs en norme L et H~ s Enfin, on construit une méthode pour laquelle des résultats de superconvergence en norme îf sont obtenus © Elsevier, Pans

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expanded mixed finite element methods for quasilinear second order elliptic problems, II

A new mixed formulation recently proposed for linear problems is extended to quasilinear second order elliptic problems This new formulation expands the standard mixed formulation in the sense that three variables are explicitly treated i e the scalar unknown its gradient and its ux the coe cients times the gradient Based on this formulation mixed nite element approximations of the quasilinear ...

متن کامل

Mixed Finite Elements for Elliptic Problems with Tensor Coeecients as Cell-centered Finite Diierences Mixed Finite Elements for Elliptic Problems with Tensor Coefficients as Cell-centered Finite Differences

We present an expanded mixed nite element approximation of second order elliptic problems containing a tensor coeecient. The mixed method is expanded in the sense that three variables are explicitly approximated, namely, the scalar unknown, the negative of its gradient, and its ux (the tensor coeecient times the negative gradient). The resulting linear system is a saddle point problem. In the c...

متن کامل

Substructuring Preconditioning for Finite Element Approximations of Second Order Elliptic Problems. Ii. Mixed Method for an Elliptic Operator with Scalar Tensor

Abstract This work continues the series of papers in which new approach of constructing alge braic multilevel preconditioners for mixed nite element methods for second order elliptic problems with tensor coe cients on general grid is proposed The linear system arising from the mixed meth ods is rst algebraically condensed to a symmetric positive de nite system for Lagrange multipliers which cor...

متن کامل

Asymptotic Expansions and Extrapolation of Approximate Eigenvalues for Second Order Elliptic Problems by Mixed Finite Element Methods

In this paper, we derive an asymptotic error expansion for the eigenvalue approximations by the lowest order Raviart-Thomas mixed finite element method for the general second order elliptic eigenvalue problems. Extrapolation based on such an expansion is applied to improve the accuracy of the eigenvalue approximations. Furthermore, we also prove the superclose property between the finite elemen...

متن کامل

On the Implementation of Mixed Methods as Nonconforming Methods for Second-order Elliptic Problems

In this paper we show that mixed finite element methods for a fairly general second-order elliptic problem with variable coefficients can be given a nonmixed formulation. (Lower-order terms are treated, so our results apply also to parabolic equations.) We define an approximation method by incorporating some projection operators within a standard Galerkin method, which we call a projection fini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017